
Software Prefetching
Bojian Zheng

bojian@cs.toronto.edu

CSCD70 Compiler Optimizations, Spring 2018

1

mailto:bojian@cs.toronto.edu

Assignment 3

2

Q & A

• Many good questions have already been asked on Piazza.
• Please go through them first before solving the assignment.

• Please ignore the Profiling sections for now, because it
seems that the option –stats is missing in lli (thanks to
Stone Jin).

• Please name your pass loop-invariant-code-motion as licm
seems to contradict with built-in LLVM pass (thanks to
Lioudmila Tishkina).

3

Q & A

• Please write your test cases
in do-while loop because
special handling is required
for for-loop and while-loop
(thanks to Terrence Hung).

• Why? Consider the code on
the right hand side:

j = 5;

for (i = 0; i < ???; ++i)

j = 10;

printf(“%d”, j);

4

Q & A

• Idea: Body statements are
not guaranteed to execute,
therefore cannot perform
code motion.

• Need to perform the
Landing-Pad Transformation
first before LICM.

j = 5;

for (i = 0; i < ???; ++i)

j = 10;

printf(“%d”, j);

5

Landing-Pad Transformation

Before After

6

Landing-Pad Transformation

Before
j = 5;

for (i = 0; i < ???; ++i)
j = 10;

printf(“%d”, j);

After
j = 5; i = 0;

if (i < ???) { // Landing-Pad
do {

j = 10;
++i

} while (i < ???); }

printf(“%d”, j);

7

Assignment 3 Hints

1. Compute Loop Invariants:
1) Traverse through the loop, and get all the definitions inside.
2) Create a mapping from Instruction to bool (isInvariant).

• Keep iterating until no changes to such mapping occurs.
• Mark instruction as isInvariant i.f.f. its operands have one of

the following properties: (1) constant (2) definition ∉ definitions
inside (3) definition ∈ definition inside but definition has
already been marked as isInvariant.

• Do not forget to also include the additional constraints
mentioned in the handout (isSafeToSpeculativelyExecute …).

8

Assignment 3 Hints

2. Compute Dominator Tree:
• Please refer to the tutorial

demo on SSA on how this was
done for Dominance Frontier.

3. Compute Loop Exit:
• llvm::Loop has built-in method

call that tells you this.

9

Assignment 3 Hints

4. Compute candidates for Code Motion:
• Must be invariant.
• Must dominate exit blocks.
• Must have only one definition?

• No need to worry about this because of SSA.

5. Perform Code Motion:
• Move candidates to the Loop Preheader, if there exists.

10

Questions?

1. Compute Loop Invariants.

2. Compute Dominator Tree.

3. Compute Loop Exit

4. Compute candidates for Code Motion.

5. Perform Code Motion.

11

Software Prefetching

12

Software Prefetching

• Recall that in our last class, we mentioned the fundamental
idea of prefetching – move data close to the processor (e.g.
cache) before it is needed.

• Need to answer the following two questions: (1) what to
prefetch and (2) when & how to prefetch.

13

What to prefetch?

• Use Prefetch Predicate:

Locality Analysis ⇒ Prefetch Predicate (what to prefetch)

• Locality Analysis: Recall from last class that
reuse ∩ localized = locality

• where reuse answers the question “under which condition are we
going to access the exact same element (Temporal Locality) or
elements of the same row (Spatial Locality), under the condition
that cache is infinitely large”; localized is determined by how large
our working set is compared with our cache size.

14

Recall: Locality Analysis

double A[3][N], B[N][3];

for (i ∈ 0, 3)

for (j ∈ 0,𝑁 − 1)

A[i][j] = B[j][0] + B[j + 1][0];

// row-major, 2 elements per
cache block, N is small (working
set < cache size).

• A[i][j]: Spatial Locality on
inner loop j

• B[j + 1][0]: Temporal Locality
on outer loop i

• B[j][0]: Group Locality due to
leading reference B[j + 1][0]

15

Miss Instances

double A[3][N], B[N][3];

for (i ∈ 0, 3)

for (j ∈ 0,𝑁 − 1)

A[i][j] = B[j][0] + B[j + 1][0];

// row-major, 2 elements per
cache block, N is small (working
set < cache size).

• Need to understand the
miss instances.

• What are the miss instances
on A[i][j] and B[j + 1][0]?

16

Miss Instances – Temporal Locality

double A[3][N], B[N][3];

for (i ∈ 0, 3)

for (j ∈ 0,𝑁 − 1)

A[i][j] = B[j][0] + B[j + 1][0];

// row-major, 2 elements per
cache block, N is small (working
set < cache size).

• Consider B[j + 1][0], which
has Temporal Locality on
outer loop i.

17

Miss Instances – Temporal Locality

double A[3][N], B[N][3];

for (i ∈ 0, 3)

for (j ∈ 0,𝑁 − 1)

A[i][j] = B[j][0] + B[j + 1][0];

// row-major, 2 elements per
cache block, N is small (working
set < cache size).

18

Miss Instances – Temporal Locality

double A[3][N], B[N][3];

for (i ∈ 0, 3)

for (j ∈ 0,𝑁 − 1)

A[i][j] = B[j][0] + B[j + 1][0];

// row-major, 2 elements per
cache block, N is small (working
set < cache size).

• Consider B[j + 1][0], which
has Temporal Locality on
outer loop i.

• Misses happen during our 1st

iteration of outer loop i.

• Therefore, predicate is true
when i = 0.

19

Miss Instances – Spatial Locality

double A[3][N], B[N][3];

for (i ∈ 0, 3)

for (j ∈ 0,𝑁 − 1)

A[i][j] = B[j][0] + B[j + 1][0];

// row-major, 2 elements per
cache block, N is small (working
set < cache size).

• Consider A[i][j] which has
Spatial Locality on inner loop j.

20

Miss Instances – Spatial Locality

double A[3][N], B[N][3];

for (i ∈ 0, 3)

for (j ∈ 0,𝑁 − 1)

A[i][j] = B[j][0] + B[j + 1][0];

// row-major, 2 elements per
cache block, N is small (working
set < cache size).

21

Miss Instances – Spatial Locality

double A[3][N], B[N][3];

for (i ∈ 0, 3)

for (j ∈ 0,𝑁 − 1)

A[i][j] = B[j][0] + B[j + 1][0];

// row-major, 2 elements per
cache block, N is small (working
set < cache size).

• Consider A[i][j] which has
Spatial Locality on inner loop j.

• Misses happen every 𝐿
iteration of inner loop j (where
𝐿 denotes the # of elements
per cache block).

• Therefore, predicate is true
when j mod 𝐿 = 0.

22

Prefetch Predicate

Locality Miss Instances Predicate

None Every Iteration true

Temporal 1st Iteration i = 0

Spatial Every 𝐿 Iteration i mod 𝐿 = 0

23

Prefetch Insertion

• Given that now we have
Prefetch Predicate, how are
we going to insert them?

• Consider the code on the
right hand side:

double a[100];

for (i ∈ 0, 100)

a[i] = 0;

// 2 elements per cache block

24

Loop Splitting

if

double a[100];

for (i ∈ 0, 100)
if (i mod 2 == 0)

prefetch …

a[i] = 0;

// 2 elements per cache block

Loop Unrolling

double a[100];

for (i ∈ 0, 100 , i += 2)
// NO “if” is needed!
prefetch …

a[i] = 0; a[i + 1] = 0;

// 2 elements per cache block

25

Loop Splitting

• Idea: Isolate Miss Instances by Loop Splitting.
• Temporal Locality ⇒ Misses on 1st Iteration ⇒ Peel the 1st Iteration
• Spatial Locality ⇒ Misses every 𝐿 Iteration ⇒ Unroll by 𝐿

26

Software Pipelining

double a[100];

for (i ∈ 0, 100 , i += 2)

prefetch _____

a[i] = 0; a[i + 1] = 0;

// 2 elements per cache block

• What should “_____” be?
• a[i]? a[i + 2]?

27

Software Pipelining

• The answer depends on the
relative ratio between
memory access latency and
shortest path through loop
body.

• To fully hide the memory
latency with execution,
prefetch what is needed for

the next
mem

exec
iterations

28

Software Pipelining

double a[100];

for (i ∈ 0, 100 , i += 2)

prefetch _____

a[i] = 0; a[i + 1] = 0;

// 2 elements per cache block

double a[100];

for (i ∈ 0, 6 , i+= 2) // prologue

prefetch a[i]

for (i ∈ 0, 94 , i += 2) // steady state

prefetch a[i + 6]

a[i] = 0; a[i + 1] = 0;

for (i ∈ 94, 100 , i += 2) // epilogue

a[i] = 0; a[i + 1] = 0;

// 2 elements per cache block,
mem

exec
= 6

29

Questions?

• Locality Analysis ⇒ Miss Instances ⇒ Prefetch Predicate

• Loop Splitting & Software Pipelining

30

